Recent Trends in Optical Lithography

نویسندگان

  • Mordechai Rothschild
  • Theodore M. Bloomstein
  • Theodore H. Fedynyshyn
  • Roderick R. Kunz
  • Vladimir Liberman
  • Michael Switkes
  • Nikolay N. Efremow
  • Stephen T. Palmacci
  • Jan H.C. Sedlacek
  • Dennis E. Hardy
  • Andrew Grenville
چکیده

VOLUME 14, NUMBER 2, 2003 LINCOLN LABORATORY JOURNAL 221 O  ,   of patterning, has enabled semiconductor devices to progressively shrink since the inception of integrated circuits more than three decades ago. Throughout the 1980s and 1990s, the trend of miniaturization continued unabated and even accelerated. Current semiconductor devices are being mass produced with 130-nm dense features; by 2007 these devices will have 65-nm dense features. Optical lithography has been, and will remain for the foreseeable future, the critical technology that makes this trend possible. (To learn the fundamentals of optical lithography, see the sidebar entitled “Optical Lithography Primer.”) In 1993, a consortium of semiconductor manufacturers called SEMATECH (for Semiconductor Manufacturing Technology) began periodically pubRecent Trends in Optical Lithography

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication and Optical Characterization of Silicon Nanostructure Arrays by Laser Interference Lithography and Metal-Assisted Chemical Etching

In this paper metal-assisted chemical etching has been applied to pattern porous silicon regions and silicon nanohole arrays in submicron period simply by using positive photoresist as a mask layer. In order to define silicon nanostructures, Metal-assisted chemical etching (MaCE) was carried out with silver catalyst. Provided solution (or materiel) in combination with laser interference lithogr...

متن کامل

The New, New Limits of Optical Lithography

The end of optical lithography has been so often predicted (incorrectly) that such predictions are now a running joke among lithographers. Yet optical lithography does have real, physical limitations and even more real economic limits, and an accurate estimation of these limits is essential for planning potential next generation lithography (NGL) efforts. This paper will review the two types of...

متن کامل

Technology backgrounder: Immersion Lithography

The growth of the semiconductor industry is driven by Moore’s law: “The complexity for minimum component cost has increased at a rate of roughly a factor of two per year” [1]. Notice that Moore observed that not only was the number of components doubling yearly, but was doing so at minimum cost. One of the main factors driving the improvements in complexity and cost of ICs, is improvements in p...

متن کامل

Fabrication of optical negative-index metamaterials: Recent advances and outlook

A status report on optical negative-index-metamaterial fabrication is given. The advantages, drawbacks and challenges of different fabrication techniques including electron-beam lithography (EBL), focused-ion beam (FIB) milling, interference lithography (IL) and nanoimprint lithography (NIL) and direct laser writing are outlined. Since the possibility of creating a truly three-dimensional (3D) ...

متن کامل

High throughput optical lithography by scanning a massive array of bowtie aperture antennas at near-field

Optical lithography, the enabling process for defining features, has been widely used in semiconductor industry and many other nanotechnology applications. Advances of nanotechnology require developments of high-throughput optical lithography capabilities to overcome the optical diffraction limit and meet the ever-decreasing device dimensions. We report our recent experimental advancements to s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004